EORI Library
Find publications about Enhanced Oil Recovery (EOR).

EORI Library

As a part of our implementing our mission, we have conducted and facilitated studies, presentations and other documents on the topic of Enhanced Oil Recovery (EOR). These documents are broken into subcategories to help you find the information pertinent to each topic. 

Display:

When it comes to electrifying the oilfield, the industry narrows its focus onto monthly energy charges (energy, demand, and basic charges), somewhat disregarding the considerable capital expenditures necessary to build out and maintain electric infrastructure. Onsite generation may not be the optimal solution in every application, but at least in terms of cost in the current environment, generators appear to offer a competitive alternative.

The authors use multivariate statistics to highlight best practices in the drilling of Codell and Niobrara reservoirs of the northern Denver-Julesburg (DJ) Basin in southeastern Wyoming. The conclusions in this paper differ from a 2017 report by the Wyoming State Geological Survey on the same topic and illustrate why simple crossplots are not sufficient to properly analyze plays where a number of variables must be addressed and weighed simultaneously.

For the Codell, this study reveals that the attributes of Proppant Volume, Horizontal Length, Gas-Oil Ratio (GOR), and Treatment Rate have the greatest influence on 6-, 12-, and 18-month cumulative oil production. By examining the individual attribute responses, the current best design in the Codell is a lateral length of at least 9,600 feet (ft), a job size of 12 million (MM) lbs, a treatment rate of at least 40 barrels per minute (bpm), and a GOR of 570 standard cubic feet per barrel (scf/bbl). The type curves from decline curve analysis provided predictive monthly production. The best EURs were obtained with the optimized design and yielded better overall economics when entered into the economic model.

For the Niobrara, a 9MM lb job size with a lateral length of 10,000 ft, a GOR of 900 scf/bbl, and a treatment rate between 40 and 45 bpm is optimal. Due to lack of available pricing data and the inability to generate valid type curves of production, an economic analysis could not be conducted for the Niobrara.

The Great Plains Institute (GPI) and the University of Wyoming’s Jeffrey Brown explore the planning of CO2 transportation networks on a regional scale and ascertains the economic and environmental benefits that can be achieved through economies of scale to meet the US midcentury decarbonization goals.

This paper represents the results of modeling efforts to identifying regional scale CO2 transport infrastructure that would serve existing facilities and allow participation by new capture projects and facilities in the near future.