EORI Library
Find publications about Enhanced Oil Recovery (EOR).

EORI Library

As a part of our implementing our mission, we have conducted and facilitated studies, presentations and other documents on the topic of Enhanced Oil Recovery (EOR). These documents are broken into subcategories to help you find the information pertinent to each topic. 

Display:

Wyoming Oil & Gas Fair / Enhanced Oil Recovery Institute Joint Conference - September 13, 2018

Presentation by Michael Godec, Vice President Advanced Resources International, Inc.

Wyoming Oil & Gas Fair / Enhanced Oil Recovery Institute Joint Conference - September 13, 2018

Presentation by Harry Liu, Reservoir Engineer, Merit Energy Company

Wyoming Oil & Gas Fair / Enhanced Oil Recovery Institute Joint Conference Presentation by by Steve Whitaker, Senior Petroleum Geologist, Enhanced Oil Recovery Institute - September 13, 2018

2018 EORI Lunch & Learn Event Presentation, March 22, 2018

by Stephen Whitaker, EORI

Nick Jones of EORI explores the application of Permian Basin ideas to the Bighorn Basin through the use of cores, cuttings, well logs, PI cards, and more.

Osage Partners, LLC. a Wyoming based operator contacted EORI and requested the institute’s assistance regarding their Muddy/Newcastle assets. The operator provided EORI with core from four wells and associated data related to the Osage field in the Powder River Basin. The operator requested that EORI characterize the clay mineralogy of the pay sands using XRD, SEM, and CEC analysis of samples from the provided core.

Eolian petroleum reservoirs are found worldwide, many having high-volume production of both oil and gas. As with any geological rock unit, each oil/gas field has production characteristics peculiar to its geological history. However, certain common factors link most eolian reservoirs. Cross-stratification due to bedform migration can influence sweep direction and efficiency. The various kinds of primary eolian strata have different poroperm characteristics. Moreover, stacking of sand seas or bedforms through geological time can create distinctive reservoir flow units in the subsurface. Tectonic activity, especially faults, may create shear zones with reduced poroperm, or partition a reservoir into structurally defined flow units. Faults may also create high-permeability zones that allow water breakthrough. Eolian reservoirs are commonly thought of as clean, and rather simple. However, in some places they are complex in terms grain composition or texture. They are commonly cemented by carbonates, anhydrites or salt, which sets up fabricselective or non-fabric selective patterns of secondary porosity in reservoirs.

There are two main themes of this poster. The first theme is to provide an update on the stratigraphy and sedimentology of the Tensleep/Casper Formation of Southeast Wyoming (and parts of Northern Colorado), and oil production from these rocks. We incorporate new measured sections, stratigraphic analysis and petrographic work undertaken by the authors. To this end we created a new database in ArcGis (geographic information software) of tops and other information that updates the historical well database of the Wyoming Oil and Gas Commission archived in Casper. This new database has been used to create Common Risk Segment (CRS) maps of the Upper Tensleep oil play in Southeast Wyoming. These CRS maps indicate trends in Tensleep reservoir, charge and trap that are useful in planning further exploration. It is possible that use of advanced seismic techniques applied over the complex structural terrains in the identified high potential areas of SE Wyoming will produce new leads and ultimately, new discoveries.

Evaluating the effectiveness of products and/or methods that might improve oil and gas production in Wyoming is one of the functions of the Enhanced Oil Recovery Institute (EORI). As part of that effort, EORI sponsored an evaluation of a novel product that reportedly could help reduce the detrimental effects of paraffin precipitation and deposition in oil wells.

This novel product is produced from recycled tires and is under development by a clean-tech company that converts scrap rubber materials into several beneficial products. Although analyses have shown that this product in its current form does contain a significant quantity of aromatic solvents that may act either as inhibitors of paraffin wax deposition or as a paraffin solvent, tests using the novel, tire-recycled oil (TRO) product on three different paraffinic oils from Wyoming oil fields showed that the concentrations of these solvents in the product are insufficient to provide substantial benefits for that purpose.

Advanced Resources International has published the U.S. CO2 Enhanced Oil Recovery Survey for end-of-year 2020.

The Enhanced Oil Recovery Institute’s Acting Director, Lon Whitman, is a contributor to an important and anticipated publication of the U.S. CO2 Enhanced Oil Recovery Survey.

The purpose of this updated survey is to provide a comprehensive status report of the 142 active CO2-EOR projects in the U.S., including enhanced production totals, reservoir characteristics, and other project parameters.

Throughout a challenging year, incremental oil production from CO2-EOR declined about 8% to 273,000 barrels per day -- this total is on par with the overall decline in U.S. crude oil production in 2020.

Despite a significant decrease in the volumes of CO2 available for injection and storage the CO2-EOR industry was able to maintain production by recycling CO2 rather than having to shut in wells. This strategy shows the resiliency of CO2-EOR during challenging economic conditions, and further supports the viability of this method as a means of storing CO2 and producing lower carbon intensity oil in the U.S.

Thermal maturity, the degree to which the total organic carbon in a formation has been transformed from kerogen to producible hydrocarbons due to heat and pressure, is an important measure for not just the quality of a source rock, but also helps for delineating areas more favorable for unconventional drilling. EORI’s report of thermal maturity of the Mowry Shale in the Powder River Basin provides a detailed map based on a large public Tmax data set.

Key observations include:

  • Nearly all of the Mowry deeper than 8000’ currently generates hydrocarbons
  • The basin axis has shifted slightly westward since the Mowry began generating hydrocarbons
  • The Mowry 8000’ line plays an important role in demarcating the over-pressured Mowry and related clay diagenesis.
  • The maximum maturity levels in the Mowry are in the “wet gas” stage

The primary objective of the study is to assess the possible implications to GHG emissions associated with this proposed ban and to do so, estimate the drilling and production losses from policies to restrict oil and gas development on federal lands. From that estimate, the emissions impacts are assessed by examining the difference in emissions associated with possible makeup production, compared to the production loss resulting from the ban, or from higher natural gas drilling levels that may be required to make up for lost supplies.

This study estimates the investment and production losses from policies to restrict oil and gas development on federal lands. The first policy is a moratorium on all new federal leases. The second involves an outright drilling ban on all onshore federal lands. The scope of this inquiry includes a study region that includes eight states: Wyoming, New Mexico, Colorado, Utah, Montana, North Dakota, California, and Alaska. These lost opportunities are estimated by first projecting how drilling and production activity is likely to evolve from 2021 through 2040 and then identifying what portion would be affected by the two policies.

The Institute predicts unconventional drilling will become less important while improved and enhanced recovery methods in conventional reservoirs will be of critical importance to Wyoming’s oil and gas sector due to expected oil prices. The Institute offers immediate changes be considered to the Wyoming Oil and Gas Conservation Commission (WOGCC) policies regarding the approval of idle well bonds to initiate construction.

EORI Offers Imperative and Immediate changes to WOGCC Policies that May Improve Production in Wyoming:

The Institute predicts unconventional drilling will become less important while improved and enhanced recovery methods in conventional reservoirs will be of critical importance to Wyoming’s oil and gas sector due to expected oil prices. The Institute offers immediate changes be considered to the Wyoming Oil and Gas Conservation Commission (WOGCC) policies regarding the approval of idle well bonds to initiate construction.

EORI Offers Imperative and Immediate changes to WOGCC Policies that May Improve Production in Wyoming:

• Eliminate the Idle Well Bond Policy
• Consider establishing a tiered Blanket Bond
• Incentivize EOR activity
• Establish a maximum 60-day time limit for reviewing and actioning water flood and disposal well applications
• Extend the time period of inactivity before a well is considered “Idle” to consecutive 24 months.
• Before the state demands that a well should be plugged, it should be evaluated to determine if it has any remaining recoverable reserves.

Wyoming, perhaps more than any other state, is dependent on revenues generated from the development and sales of minerals within its borders and has a vested interest in ensuring that its resources are properly and efficiently exploited. Maximizing the efficiency of oil and gas production in Wyoming is one of the primary goals of the Enhanced Oil Recovery Institute (EORI). Potential methods or practices that can improve or enhance the recovery efficiency of oil and gas production in the state are of paramount interest. Likewise, those policies or practices that hinder such efforts are also important to discuss.

Wyoming has nearly one billion barrels of proved oil reserves, a significant portion of which is still on primary production. Assessing the potential for secondary recovery from current oil fields is always a daunting task and requires evaluations regarding whether any given field will respond favorably to secondary recovery efforts.

This paper makes general assumptions regarding the feasibility of using a water flood to enhance oil recovery in a field based on publicly available data. The conclusions resulting from these assumptions are meant to be a guideline for the potential of future water flooding and are not meant to provide detailed evaluations of any given field’s ultimate recovery.