EORI Library
Find publications about Enhanced Oil Recovery (EOR).

U.S. CO2 Enhanced Oil Recovery Survey 2021 Update

Advanced Resources International has published the U.S. CO2 Enhanced Oil Recovery Survey for end-of-year 2020.

The Enhanced Oil Recovery Institute’s Acting Director, Lon Whitman, is a contributor to an important and anticipated publication of the U.S. CO2 Enhanced Oil Recovery Survey.

The purpose of this updated survey is to provide a comprehensive status report of the 142 active CO2-EOR projects in the U.S., including enhanced production totals, reservoir characteristics, and other project parameters.

Throughout a challenging year, incremental oil production from CO2-EOR declined about 8% to 273,000 barrels per day -- this total is on par with the overall decline in U.S. crude oil production in 2020.

Despite a significant decrease in the volumes of CO2 available for injection and storage the CO2-EOR industry was able to maintain production by recycling CO2 rather than having to shut in wells. This strategy shows the resiliency of CO2-EOR during challenging economic conditions, and further supports the viability of this method as a means of storing CO2 and producing lower carbon intensity oil in the U.S.

Polymer Flooding the Minnelusa in the Powder River Basin of Wyoming

Polymer-augmented waterflooding of the Minnelusa in Wyoming has proven to be a successful method for improving production in most cases compared to normal waterfloods. Polymer is a lowcost, low-risk option when considering a method for enhancing production of a particular field. Its primary function is to improve the mobility ratio of the injected water by increasing its viscosity, thereby improving the volumetric sweep and conformance within the reservoir.

Advantages of using polymer include: (1) low cost, (2) preventing early water breakthrough, (3) improving volumetric sweep and conformance, (4) increasing oilwater ratios, (5) mobilizing oil that would likely have been bypassed under normal waterflood conditions, (6) mitigating heterogeneous permeabilities within the reservoir, and (7) other enhanced oil recovery injection technologies can still be applied after the polymer flood. Most, but not all, Minnelusa fields examined exhibited improved recoveries using polymer compared to fields under conventional waterfloods. Uneconomical polymer floods can be caused by a variety of factors, chief of which is the failure to properly understand the internal architecture of the reservoir prior to initiating the flood.

A Survey of U.S. CO2 Enhanced Oil Recovery Projects

The purpose of this survey is to provide a comprehensive status report of active CO2 EOR projects in the U.S., as of end-of-year 2019. This survey provides the first update of CO2 EOR project data since the final publication of the Oil & Gas Journal (OGJ) EOR Survey in 2014.

The 2019 U.S CO2 EOR survey shows that incremental oil recovery from CO2 EOR in the U.S. has held steady at approximately 300,000 barrels of oil per day. A total of 3.0 Bcf per day of CO2 is purchased for CO2 EOR, including 1.0 Bcf per day from “industrial” sources, which represents an increase of 30% over the last seven years.

Carbon management, in the form of CO2 capture and storage, is the most viable pathway to meeting significant carbon emission reduction targets over the next several decades. This survey demonstrates the value and potential of CO2 EOR to the overall carbon management strategy in the U.S.

Periodic updates will be made to this survey to include the latest CO2 EOR project data available. This publication is intended as a public resource for petroleum and energy industry stakeholders, and is offered free of charge by ARI. The next survey update is anticipated for Fall 2021.