EORI Library
Find publications about Enhanced Oil Recovery (EOR).

Simulation evaluation of CO2 flooding in the muddy reservoir

The simulation evaluation concluded that gravity stable CO2 flooding can be an effective EOR method for the Grieve Muddy reservoir. Up to 23 MMBO could ultimately be recovered by gravity stable CO2 flooding. The reservoir has potential to sequester more than 145 BSCF of CO2 at the end of CO2 flooding operation. Prior to the simulation of history matching and CO2 flooding, a four-layer Petrel model of Grieve Muddy reservoir was developed based on the identified facies in the Muddy channel sand and the overlain sandstone interval of bay-head delta deposition. Porosity and permeability distributions of layers generated in the Petrel model were exported to the simulation model. An OOIP estimation of 67 MMBO in Grieve Muddy channel sand has resulted from a simulation history matching based on the full-field material balance. History matching also reveals that about one MMSTBO of oil and 8.2 BSCF of gas have moved down from the overlain low-permeability sandstone interval into the Muddy channel sand interval during the reservoir depletion.

Simulation evaluation of gravity stable CO2 flooding in the Muddy reservoir at Grieve Field, Wyoming

Grieve oil field was discovered in August 1954. The field is located in southeastern Wind River Basin, central Wyoming, and is currently operated by Elk Petroleum Inc. (Elk Petroleum), Figure 1. The producing oil reservoir is a stratigraphic/structural trap at a depth of 6,900 ft in the Lower Cretaceous, valley-fill and channelized, Muddy sandstone. The average structural dip in the Grieve area is about 15 degrees to the northeast.